135(E) (FEB./MARCH-2025)

Total Marks: 100

(મુખ્ય/પૂરક 2025માં લેવાયેલ એચ. એસ. સી. (સામાન્ય પ્રવાહ) પરીક્ષાના પરીક્ષણકાર્ય માટે ગુણપ્રદાન યોજનાનો નમૂનો)

	र विकास का मान्य के जिल्ला मान्य
1.	Co-ordinators, Moderators and Examiners for Statistics (135) subject are
	requested to go through this Answer Key carefully before evaluation.
2.	Evaluation should be done as per instructions given in Answer Key so that
	uniformity and consistency in the evaluation work shall be maintained.
3.	There are total 61 questions with (General Options) in this question paper.
	Each question should be corrected according to the instructions given in
	Answer Key only.
4.	Each correct answer should be marked in the decimal fraction method and
	should be written in left side margin only. Answer should be individually
	marked and at the end of the each section write the total marks in \angle .
5.	If a student gets the correct answer by any correct method other than the
	method shown in the answer key, is eligible to get full marks.
6.	Marks of each section according to the questions should be written orderly
	in the space provided on the top of the page. If a question is not answered write -
7.	In case of general optional questions in Section C, D, E and F check all the
	answers from each sections and consider the marks whichever is higher
	and circle on the less marks.
8.	Mark × against wrong answers and write = 0 =
9.	In case of shuffled answers use CF/BF wherever necessary.
10.	This answer key contains total 21 pages.
11.	Answers should be checked strictly according to answer key and no
	injustice should be done to students by over, under or wrong evaluation.

135(E)]

SECTION-A

Choose the correct alternative from the following multiple choice type questions.

(Each questions carries Imark)

Note:

- > For each correct option or correct answer give 1 mark.
- > Give full marks if A, B, C, D and answer written, both are correct
- > If only option written then give full marks for the right answer
- > If only correct answer written then also give full marks.
- If question number of answer is not written by students give marks for correct answer written in order.

1	(D) Retail price
2	(C) 133.33
3	$(C) -1 \le r \le 1$
4	(C) 1
5	$(A) (\overline{x}, \overline{y})$
6	(B) Square of correlation coefficient
7	(C) Seasonal
8	(C) t
9	(C) To measurer the life of electric bulb
10	(A) 0
11	(C) Maximum temperature during a day
12	(D) 10
13	(B) Negatively Skewed
14	(A) Mean = 0, Variance = 1
15	(B) 0.5
16	(C) 19
17	(D) N(5, 0.25)
18	(C) 19
19	(B) anx^{n-1}
20	$(A) - \frac{p}{x} \cdot \frac{dx}{dp}$

135(E)]

2

SECTION-B

Answer the following questions in one sentence. (Each questions carries Imark) [10]

Note:

- > Even if full sentence not written give full marks.
- > If the answer is written half then give half mark for the correct effort/attempt of the students.
- > If the sentence covers the content of the answer, give full marks.

21. Rate of inflation =
$$\frac{\left(\begin{array}{c} \text{Wholesale price index} \\ \text{number of current year} \end{array}\right) - \left(\begin{array}{c} \text{Wholesale price index} \\ \text{number of previous year} \end{array}\right)}{\text{Wholesale price index number of previous year}} \times 100$$

- 22. It does not give exact degree of relationship between two variables.
- 23. Both variables are multiplied by 2. So, regression coefficient will not change.

24. Here,
$$\hat{y} = 25.1 - 1.5t$$

Taking $t = 8$
 $\hat{y} = 25.1 - 1.5(8)$
 $= 25.1 - 12$
 $= 13.1$

- 25. Suppose A and B are any two events of a finite sample space U. Event A and B do not occur together, which means $A \cap B = \emptyset$
- 26. For symmetrical binomial distribution $p = \frac{1}{2}$, $q = \frac{1}{2}$ Putting $p = \frac{1}{2}$ in Mean = np = 9 $n\left(\frac{1}{2}\right) = 9$ $\therefore n = 9 \times 2$ $\therefore n = 18$
- 27. "Standard score is independent of unit of measurement." This statement is true.
- 28. Standard Deviation $=\frac{4}{5} \times \sigma$ $\therefore 12 = \frac{4}{5} \times \sigma$ $\therefore \frac{12 \times 5}{4} = \sigma$ $\therefore \sigma = 15$

29.
$$\lim_{x \to -1} 4x + k = 6$$

 $\therefore 4(-1) + k = 6$
 $\therefore k = 6 + 4$
 $\therefore k = 10$

30. The change in cost due to small change in production is called marginal cost.

135(E)]

3

SECTION-C

Answer the following questions as directed. Any seven out of nine (Each questions carries 2 marks)

31.	Real	wages	Average monthly wage	× 100
-	xccar	mages	Cost of living index number	X 100

Year	Average monthly wage (Rs.)	Cost of living index number	Real wage
2020	36000	120	$\frac{36000}{120} \times 100 = 30000$
2021	40000	150	$\frac{40000}{150} \times 100 = 26666.67$
2022	52000	130 mg - 131 mg - 130	$\frac{52000}{130} \times 100 = 40000$
2023	_ 56000	160	$\frac{56000}{160} \times 100 = 35000$

For each correct & give 0.5 marks

For each component give

0.5 marks

32. 1.
$$r(x, -y) = -r(x, y) = -0.8$$
 1 m
2. $r(-x, -y) = r(x, y) = 0.8$ 1 m

33. Here, $\overline{x} = 30$, $\overline{y} = 20$ and b = 0.5 is given.

Intercept of the regression line: and a company and gaman Whom he are

$$a = \overline{y} - b\overline{x}$$

= 20 - 0.5(30)
= 20 - 15
= 5

Regression line Y on X

$$\widehat{y} = a + bx$$

$$= 5 + 0.5x$$

34. The components of time series are as follows:

- Long term component (Trend)
- 2. Seasonal component
- Cyclical component 3.
- Random (Irregular) component

35.
$$U = \{HH, HT, TH, TT\}$$

$$n=4$$

A = event of getting one head and one tail (i) $A = \{HT, TH\}$ m = 2 $P(A) = \frac{m}{n} = \frac{2}{4} = \frac{1}{2}$

(ii) B = event of getting at least one head.
B = {HT, TH, HH}

$$m = 3$$

 $P(B) = \frac{m}{n} = \frac{3}{4}$

135(E)]

properties of Binomial Distribution: (Give 0.5 for any four correct properties.)

- 1. Binomial distribution is a discrete distribution
- 2. Its parameters are n and p.
- 3. The mean of the distribution is np.
- 4. The variance of the distribution is npq and its standard deviation is \sqrt{npq} .
- 5. For binomial distribution, mean is always greater than the variance and q $= \frac{variance}{mean} = probability of failure or np > npq$
- 6. If p < 1/2 then the skewness of the distribution is positive for any value of n
- 7. If $p = \frac{1}{2}$ then the distribution becomes symmetric that means the skewness of the distribution is zero for any value of n,
- 8. If $p > \frac{1}{2}$ then the skewness of the distribution is negative for any value of n.

37. N(16,0.5) in interval and modulus form

Comparing N(16,0.5) with $N(a, \delta)$ we get,

$$a = 16, \delta = 0.5$$

Interval form = $(a - \delta, a + \delta)$

Putting the value a = 16 and $\delta = 0.5$

$$= (16 - 0.5, 16 + 0.5)$$

Modulus form = $|x - a| < \delta$

Putting the value a=16, $\delta=0.5$

$$|x-16| < 0.5$$

38.
$$\lim_{x \to -2} \frac{x^7 + 128}{x + 2} = \lim_{x \to -2} \frac{x^7 - (-2)^7}{x - (-2)}$$
 1 m

$$=$$
 $7(-2)$

$$= 7(-2)^{7-1} \qquad \left[\because \lim_{x \to a} \frac{x^n - a^n}{x - a} = n a^{n-1} \right]$$

$$= 7(-2)^6$$

$$= 7(64)$$

Here, $y = 12 + 4x - 7x^2$ 39.

$$\frac{dy}{dx} = 4 - 14x$$

at
$$x=2$$

$$\frac{dy}{dx} = 4 - 14(2)$$

$$=4-28$$

$$=-24 < 0$$

$$\therefore$$
 Function is decreasing at $x = 2$.

135(E)]

5

SECTION-D

Answer the following questions as directed. Any Eight out of Twelve (Each questions carries 3 marks) [24]

40.

Fixed base index number of current year = $\frac{\begin{pmatrix} \text{Chain base index number.} \\ \text{of the current year} \end{pmatrix} \times \begin{pmatrix} \text{Fixed base index number of the} \\ \text{preceding year to current year} \end{pmatrix}}{100}$ 0.5 m

Year	Index Number of Sale	Fixed base index number
2020	110	110
2021	112	$=\frac{112\times110}{100} = 123.20 \checkmark$
2022	109	$=\frac{109\times123.20}{100}=134.29$
2023	108	$=\frac{108\times134.29}{100}=145.03$
2024	105	$=\frac{105\times145.03}{100}=152.28$

For each correct give 0.5 marks

41.

		The Table of the Park	
Fuel Items	Index Number (I)	Weight (W)	IW
A.	100 + 50 = 150	5	750
В	100 + 90 = 190	4 1 (2)	760
С	100 + 110 = 210	3	630
D	100 - 5 = 95	2	. 190
Е	100 - 2 = 98	1	98
	Total	15	2428

For correct table give 2 marks

Index Number of fuel prices for the year $2024 = \frac{\sum IW}{\sum W} = \frac{2428}{15} = 161.87$

135(E)]

6

42.
$$Here, n = 10, \sum (x - \overline{x})(y - \overline{y}) = 72, S_x = 3 \text{ and } \sum (y - \overline{y})^2 = 360 \text{ is given.}$$

$$S_y = \sqrt{\frac{\sum (y - \overline{y})^2}{n}} = \sqrt{\frac{360}{10}} = 6$$

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{n \times S_x \times S_y}$$

$$= \frac{72}{10 \times 3 \times 6} = \frac{72}{180} = 0.4$$

$$\therefore r = 0.4$$

ab = 16

$$\bar{x} = 30; \bar{y} = 500; S_x^2 = 25; S_y^2 = 10000; Cov(x, y) = 400$$

$$b = \frac{cov(x, y)}{S_x^2}$$

$$= \frac{400}{25}$$

$$a = \overline{y} - b\overline{x}$$

$$= 500 - 16(30)$$

$$= 500 - 480$$

$$\therefore a = 20$$
1 m

\therefore Regression line of y on x

$$\hat{y} = a + bx$$

= 20 + 16x
Putting $x = 40$,
 $\hat{y} = 20 + 16(40)$
= 20 + 640
 $\hat{y} = 660$ units 0.5 m

: When the price is Rs. 40 then the supply of ball pen is 660 units

44.

$$\widehat{y} = 11 + 3x$$

$$\therefore b = 3$$

$$\text{Here, } b = 3 \text{ and } S_x : S_y = 3 : 10$$

$$\text{Now, } b = r \times \frac{S_y}{S_x}$$

$$0.5 \text{ m}$$

$$0.7 \text{ m}$$

$$0.7 \text{ m}$$

$$0.7 \text{ m}$$

$$0.8 \text{ m}$$

$$0.9 \text{ m}$$

$$0.9 \text{ m}$$

Coefficient of determination

$$R^2 = (r)^2$$

= $(0.9)^2$
= 0.81

135(E)]

7

The merits of graphical method are as follow: (Any three) Each carries 1 mark

- 1. This method is easy to understand and use.
- 2. The trend can be found without any mathematical formula or calculation.
- 3. This method can be used even if the trend is not linear.
- 4. An estimate of the type of curve to be fitted for obtaining trend can be given by this method.

46.

Each carries 1 mark

The following characteristics of the random experiment can be as follow.

- 1. A random experiment can be independently repeated under objectively almost identical circumstances.
- 2. All the possible outcomes of a randomized experiment are known, but the exact outcome cannot be predicted before conducting the experiment.
- 3. The random experiment results into a certain outcome.

47.

 $=\frac{9}{10}$ 1m

135(E)]

8

48.

$$n=100$$
 0.5m

A= Event that the number selected is a single digit number

$$A = \{1, 2, 3, \dots, 9\}$$

$$m = 9$$

$$P(A) = \frac{m}{n} = \frac{9}{100}$$
 0.5m

B= Event that the number selected is a perfect square

$$B = \{1, 4, 9, 16, 25, 36, 49, 64, 81, 100\}$$

$$m = 10$$

$$P(B) = \frac{m}{n} = \frac{10}{100}$$
 0.5m

 $A \cap B$ = Event that the number selected is a single digit number and a perfect square

$$A \cap B = \{1, 4, 9\}$$

$$m = 3$$

$$P(A \cap B) = \frac{m}{n} = \frac{3}{100} \qquad \qquad 0.5m$$

 $A \cup B$ = Event that the number selected is a single digit number or a perfect number

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= \frac{9}{10} + \frac{10}{100} - \frac{3}{100}$$

$$= \frac{9 + 10 - 3}{100}$$

$$= \frac{16}{100} \text{ or } \frac{4}{25} \text{ or } 0.16 \implies 1 \text{m}$$

49.

Mean =
$$np = 2$$
, Variance = $npq = \frac{6}{5}$: $n(0.4) = 2$

$$npq=\frac{6}{5}$$

$$\therefore (2)q = \frac{6}{5}$$

$$rac{q}{r} = rac{6}{10} = 0.6$$
 0.5m

$$p = 1 - q = 1 - 0.6$$

$$= 0.4$$
 0.5m

Putting
$$p = 0.4$$
 in $np = 2$

$$n(0.4)=2$$

$$n = \frac{2}{0.4} = 5$$
 0.5m

So,
$$n = 5$$
, $p = 0.4$ and $q = 0.6$

So,
$$n = 5$$
, $p = 0.4$ and $q = 0.6$
 $p(x) = n_{C_x} p^x q^{n-x}$ 0.5m

$$p(2) = 5_{C_2}(0.4)^2(0.6)^{5-2}$$

$$= 10 \times 0.16 \times 0.2$$

$$= 0.3456 \text{ or } \frac{216}{625}$$

135(E)]

9

50.

(1) By the definition of discrete probability distribution, we must $h_{av_{\ell}}$

$$p(0) + p(1) + p(2) + p(3) + p(4) = 1$$

$$4K + 15K + 25K + 5K + K = 1$$

$$: 50K = 1$$

$$K = \frac{1}{50} = 0.02$$

(2) Probability of occurrence of one or two accidents

$$= P(X = 1) + P(X = 2)$$

$$= 15K + 25K$$

$$= 40K$$

$$= 40(0.02)$$

$$= 0.80$$
1.5m

51.

$$f(x) = (x^2 + 3x + 4)^7$$

$$\therefore y = (x^2 + 3x + 4)^7$$

By using Chain rule,

Suppose
$$u = x^2 + 3x + 4$$
, Thus $y = u^7$ 0.5m

$$\frac{du}{dx} = 2x + 3 \text{ and } \frac{dy}{du} = 7u^6$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} \longrightarrow 0.5 \text{m}$$

$$=7u^6\times(2x+3)$$

$$=7(x^2+3x+4)^6(2x+3)$$

Thus
$$f'(x) = 7(x^2 + 3x + 4)^6(2x + 3)$$

135(E)]

10

SECTION-E

Answer the following questions as directed Any Three out of Four (Each question carries 4 marks.) [12]

- 52. Here, X = monthly expense of students; $\mu = Rs.2000, \sigma = Rs.500$
 - (1) Percentage of students having expense between Rs.750 and Rs. 1250

$$= P(750 \le X \le 1250)$$

$$Z_1 = \frac{750 - 2000}{500} = -2.5$$

$$Z_2 = \frac{1250 - 2000}{500} = -1.5$$

$$P(750 \le X \le 1250) = P(-2.5 \le Z \le -1.5)$$

Now,
$$P(-2.5 \le Z \le -1.5)$$
 0.5m

$$= P(-2.5 \le Z \le 0) - P(-1.5 \le Z \le 0)$$

From the table of Standard Normal Curve

$$= 0.4938 - 0.4332$$

$$= 0.0606$$

The percentage of students having expenses between Rs.750 and Rs.1250

$$= 100 \times 0.0606$$

$$= 6.06\%$$

(2) Percentage of persons having expense more than Rs. 1800

$$= P(X \ge 1800)$$

$$Z = \frac{1800 - 2000}{500} = -0.4$$

$$P(X \ge 1800) = P(Z \ge -0.4)$$
 0.5m

Now,
$$P(Z \ge -0.4)$$

$$= P(-0.4 \le Z \le 0) + P(0 \le Z \le \infty)$$

From the table of Standard Normal Curve

$$= 0.1554 + 0.5000$$

$$= 0.6554$$
 0.5m

The percentage of students having expenses more than Rs. 1800

$$= 100 \times 0.6554$$

$$= 65.54\%$$
 0.5m

135(E)]

0.5m

0.5m

0.500

7: -04 7:0

The below answer is only for blind students

- 52. Properties of normal distribution:
- 1. It is distribution of continuous random variable.
- 2. The constant μ and σ are the parameters of distribution which indicate mean and standard deviation respectively.
- 3. The distribution is symmetric about μ and its skewness is zero (0).
- 4. For this distribution, the value of mean, median and mode are same. In notation, $\mu = M = M_0$.
- 5. For this distribution, quartiles are equidistant from median. i.e.

$$Q_3 - M = M - Q_1$$
 and $M = \frac{Q_3 + Q_1}{2}$.

- 6. The probability curve is completely bell shaped.
- 7. Normal curve is asymptotic to X-axis. The tails never touch X-axis.
- 8. The approximate value of quartiles of normal distribution can be obtained from the following formula

$$Q_1 = \mu - 0.675 \,\sigma$$
 and $Q_3 = \mu + 0.675 \,\sigma$

- 9. For this distribution, quartile deviation $=\frac{2}{3}\sigma$.
- 10. For this distribution, mean deviation $=\frac{4}{5}\sigma$.

Each correct properties carries 1 mark

135(E)]

[Contd.

12

53. Here,
$$\mu = 52$$
; $\sigma^2 = 64 \, So \, \sigma = 8$

(1) The estimated limits which include exactly middle 60% of the observations.

$$P(x_1 \le X \le x_2) = 60\% = \frac{60}{100} = 0.60$$

Converting to Z

$$\therefore P\left(\frac{x_1 - 52}{8} \le \frac{x - \mu}{\sigma} \le \frac{x_2 - 52}{8}\right) = 0.60$$
 0.5m

$$P\left(\frac{x_1 - 52}{8} \le \frac{x - \mu}{\sigma} \le \frac{x_2 - 52}{8}\right) = 0.60$$

$$P(z_1 \le Z \le z_2) = 0.60 \quad \left(\because z_1 = \frac{x_1 - 52}{8}, z_2 = \frac{x_2 - 52}{8}\right)$$
0.5m

From Table	Arcá	Z-score
Nearest value before 0.3000	0.2995	0.84
Nearest value after 0.3000	0.3023	0.85
Average value	0.3009	0.845

The nearest value of 0.3000 is 0.2995, so $z_1 = -0.84$ and $z_2 = 0.84$

$$\therefore P(z_1 \le Z \le 0) = 0.30$$

$$z_1 = \frac{x_1 - \mu}{\sigma}$$

$$\therefore -0.84 = \frac{x_1-52}{8}$$

$$\therefore -0.84 \times 8 = x_1 - 52$$

$$\therefore -6.72 = x_1 - 52$$

$$\therefore x_1 = 45.28$$

$$\therefore P(0 \le Z \le z_2) = 0.30$$

 z_1 is on the left hand side of Z = 0, z_2 is on the right hand side of Z = 0, $z_2 = 0.84$

$$z_2 = \frac{x_2 - \mu}{\sigma}$$

$$\therefore 0.84 = \frac{x_2 - 52}{8}$$

$$0.84 \times 8 = x_2 - 52$$

$$\therefore 6.72 = x_2 - 52$$

$$z_{2} = \frac{x_{2} - \mu}{\sigma}$$

$$\therefore 0.84 = \frac{x_{2} - 52}{8}$$

$$\therefore 0.84 \times 8 = x_{2} - 52$$

$$\therefore 6.72 = x_{2} - 52$$

$$\therefore x_{2} = 58.72$$

$$1 \text{m}$$

.. The estimated limits which include exactly middle 60% of the observations between 45.28 to 58.72

The below answer is only for blind students

53.

If X is a random normal variable with Mean μ and standard deviation σ then random variable $Z = \frac{x-\mu}{\sigma}$ is called standard normal random variable and its probability 2m

function is given below

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}; -\infty < z < \infty$$
 2m

13

IP.T.O.

$$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} \text{ where } f(x) = x^2 + x,$$

$$Here, f(x) = x^2 + x \qquad 0.5m$$

$$f(2) = (2)^2 + 2$$

$$= 4 + 2$$

$$= 6 \qquad 1m$$

Now,
$$\lim_{x\to 2} \frac{f(x)-f(2)}{x-2} = \lim_{x\to 2} \frac{(x^2+x)-6}{x-2}$$

Numerator =
$$(x^2 + x) - 6$$

= $x^2 + 3x - 2x - 6$
= $x(x + 3) - 2(x + 3)$
= $(x + 3)(x - 2)$

$$Denominator = (x - 2)$$

So, =
$$\lim_{x \to 2} \frac{(x^2 + x) - 6}{x^2 - 4} = \lim_{x \to 2} \frac{(x + 3)(x - 2)}{(x - 2)}$$
 1.5m
= $\lim_{x \to 2} (x + 3) \quad (\because x - 2 \neq 0)$
= $2 + 3 = 5$ 1m

55

Demand function of an item is $\left(P = 30 - \frac{x^2}{10}\right)$

Now, revenue function $R = p.x = \left(30 - \frac{x^2}{10}\right).x$

$$\therefore R = 30x - \frac{x^3}{10}$$

$$\frac{dR}{dx} = 30 - \frac{3x^2}{10}$$
 0.5m

Putting
$$\frac{dR}{dx} = 0$$

$$\therefore 30 - \frac{3x^2}{10} = 0$$

$$300 - 3x^2 = 0$$

$$\therefore 3x^2 = 300$$

$$\therefore x^2 = 100$$

$$\therefore x = 10$$

$$\text{Now}, \frac{d^2R}{dx^2} = -\frac{6x}{10}$$

Here putting x = 10 in

$$,\frac{d^2R}{dx^2} = -\frac{6(10)}{10} = -6 < 0$$
 0.5m

Revenue is maximum at x=10

Putting x = 10 in demand function

$$\left(p=30-\frac{x^2}{10}\right)$$

= price p =
$$30 - \frac{(10)^2}{10}$$

= $30 - \frac{100}{10}$
= $30 - 10$

$$p = 20$$

Revenue maximum at =10 and p = Rs.20

135(E)]

14

SECTION-F

Solve the following questions as directed. Any Four out of Six (Each question carries 5 marks.)

56.

Item	Year 2024		Year 2023		n a	n. d.	p_1q_1	p_0q_1
Ttem	p_1	q_1	$\mathbf{p_0}$	$\mathbf{q_0}$	p_1q_0	p_0q_0	P141	P041
Rice	$\frac{800}{20} = 40$	1.5	$\frac{780}{20} = 39$	1	40	39	60	58.5
Milk	44	10	40	12	528	480	440	400
Bread	50	1.5	45	2	100	90	75	67.5
Banana	36	1.5	30	2	72	60	54	45
12	Total 740 669 629 571						571	

Laspeyre's Index Number IL

For correct table = 2m

$$I_{L} = \frac{\sum p_{1}q_{0}}{\sum p_{0}q_{0}} \times 100$$

$$= \frac{740}{669} \times 100$$

$$= 110.61$$

$$\therefore I_L = 110.61$$

Paasche's Index Number Ip

$$I_P = \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100$$

$$= \frac{629}{571} \times 100$$

$$= 110.16$$

$$\therefore I_P = 110.16$$

Fisher's Index Number $I_F = \sqrt{I_L \times I_P}$

$$= \sqrt{110.61 \times 110.16}$$
$$= 110.38$$

$$\therefore I_F = 110.38$$

135(E)]

15

57. Here, n = 6, X = Advertisement Cost (lakh Rs.); Y = Sales of electric fans (crore Rs.)

				A STANFACTOR OF STANFACTOR			
Company	x	y	$u = \frac{x - 100}{20}$	$v = \frac{x - 35}{5}$	uv	u^2	v^2
Λ	140	35	2		0	4	0
В	120	45	main ideas in remodern motive environments in particular framework for fine damping distributions.	2.	2	1	4
C	80	15		4	4	1	16
, D	100	40	0	1	0	0	1
E	80	20	- manufacturan de la company d	- 3	3	1	9
F	180	50	4	3 4	12	16	9
Total	700	205	5	1 - 31.1	21	23	39

For correct table = 2m

n=6

$$r = \frac{n\sum uv - (\sum u)(\sum v)}{\sqrt{n(\sum u^2) - (\sum u)^2} \times \sqrt{n(\sum v^2) - (\sum v)^2}}$$

$$= \frac{6(21) - (5)(-1)}{\sqrt{6(23) - (5)^2} \times \sqrt{6(39) - (-1)^2}}$$

$$= \frac{126 + 5}{\sqrt{138 - 25} \times \sqrt{234 - 1}} \longrightarrow 1m$$

$$= \frac{131}{\sqrt{113} \times \sqrt{233}}$$
131

1mor

 $=\frac{162.26}{}$

= 0.81

135(E)]

16

Sales (thousand Units)	Profit (lakh Rs.)	R _x	Ry	$d = R_x - R_y$	d^2
25	-y	7.5	7	0.5	0.25
	65	7.5		1.5	2.25
58	140	5.5	4		0
215	500	1	. 1	0	1
72	115	. 4	5	1	1
58	65	5.5	7	-1.5	2.25
25	65	7.5	7	0.5	0.25
		3	3	0	0
90	220			0	0
162	340	_ 2	2		6
C. 1 = 010 PT 100 1100.	Total			0	1 40

The calculation of C.F. is as follows

For correct table = 2m

For correct table = 1 m

Repeated Observations	**	n	$\left(\frac{m^3-m}{12}\right)$
m2.0 (25 Ee.1+2	E E = (·	2	$\left(\frac{2^3-2}{12}\right)=0.5$
58 (3)88 1 +	w	2	$\left(\frac{2^3-2}{12}\right)=0.5$
65 commence (as)	0 EL = 9	3	$\left(\frac{3^3-3}{12}\right)=2$
TATES A RESPONDENCE		-	CF = 3

$$r = 1 - \frac{6[\sum d^2 + CF]}{n(n^2 - 1)}$$

$$= 1 - \frac{6[6 + 3]}{8(64 - 1)}$$
1m

$$=1-\frac{6[9]}{8(63)}$$

$$= 1 - \frac{54}{504}$$

$$= 1 - 0.11$$

$$= 0.89 \qquad \qquad 1 \text{n}$$

135(E)]

17

59. Here, n = 6, X = Time of usage of car (years); Y = Average annual maintenance c_{0st} (thousand Rs.)

Car	x 1	y .	Xy Xy	x^2
1	3	10	30	9
2	1	5	5	形 1
3	2	8	(m) 1- 16	4
4	2	7	14	4
5	5	13	65	25
6	3	8	24	9
Total	16	51	154	52

For correct table = 1.5m

n = 6,

$$\overline{x} = \frac{\sum x}{n} = \frac{16}{6} = 2.67$$

$$\bar{y} = \frac{\sum y}{n} = \frac{51}{6} = 8.5$$
 0.5m

$$b = \frac{n \sum xy - (\sum x)(\sum y)}{n \sum x^2 - (\sum x)^2}$$
 0.5m

$$=\frac{6(154)-(16)(51)}{6(52)-(16)^2}$$

$$=\frac{924-816}{312-256}$$

$$=\frac{108}{56}$$

$$b = 1.93$$
 0.5m

$$a = \overline{y} - b \overline{x}$$

$$= 8.5 - 1.93(2.67)$$

$$= 8.5 - 5.15$$

$$a = 3.35$$
 0.5m

So the regression line of Y on X is:

$$\widehat{y} = a + bx$$

$$\hat{y} = 3.35 + 1.93x$$
 0.5m

Putting
$$X = 5$$
,

$$\hat{y} = 3.35 + 1.93(5)$$

$$\hat{y} = 3.35 + 9.65$$

$$\hat{y} = 13$$
 (thousands Rs.) 0.5m

> Error:

$$e = y - \hat{y}$$

$$= 13 - 13$$

$$= 0$$
 0.5m

135(E)]

60. Here, n = 7, t = Time; y = Birth rate

· · · · · · · · · · · · · · · · · · ·				
the security of the security o	vapuremusikasina kai mikominikasinaksi kunikasi kunikan kai kunikan kai kanaksi kanaksi kanaksi kanaksi kunika Y	ty	L ²	
ak vedika ara a uman marma vedan kaki ke mijeni kega tala pilangia, gibu era keni yekat bara 1	22.2	22.2	To dear to retain the control of the dear to control of the contro	
2	21.8	43.6	4	
takir apiserinyo osiniid au riseroentamaakiratkaateenii, ahiinepii ahiikerjeenayoonii e	21.3	63.9	9	
EMBO force (Microsoft and an all and an analysis of the Electric Science), software all and an analysis of the	20.9	83.6	16	
5	20.6	103	25	
6	20.2	121.2	36	
To the terminal of the control of th	california in the control of the description of the description of the control of	139.3	49	
28		576.8	140	
	t 1 2 3 4 5 6	t y 1 22.2 2 21.8 3 21.3 4 20.9 5 20.6 6 20.2 7 19.9	t y ty 1 22.2 22.2 2 21.8 43.6 3 21.3 63.9 4 20.9 83.6 5 20.6 103 6 20.2 121.2 7 19.9 139.3	

For correct table = 2m

$$n = 7,$$

$$\bar{t} = \frac{\sum t}{n} = \frac{28}{7} = 4,$$

$$\bar{y} = \frac{\sum y}{n} = \frac{146.9}{7} = 20.99 \implies 0.5m$$

$$b = \frac{n\sum ty - (\sum t)(\sum v)}{n\sum t^2 - (\sum u)^2} \implies 0.5m$$

$$= \frac{7(576.8) - (28)(146.9)}{7(140) - (28)^2}$$

$$=\frac{4037.6-4113.2}{980-784}$$

$$=\frac{-75.6}{196}$$

$$b = -0.39$$

$$a = \bar{y} - b \,\bar{t}$$

$$=20.99-(-0.39)4$$

$$=20.99+1.56$$

$$a = 22.55$$

Equation for Trend $\hat{y} = a + bt$

$$\hat{y} = 22.55 + (-0.39)t$$

$$\hat{y} = 22.55 - 0.39t$$
 0.5m

135(E)]

19

To estimate the birth rates in the year 2025, we will take t = 8

$$\hat{y} = 22.55 - 0.39(8)$$

= 22.55 - 3.12

$$= 19.43$$

⇒ 0.5m

Hence, the estimates for the birth rates in the year is 19.43

61. Calculation of four monthly moving averages

Year	time	Sales (lakh Rs.)	Four yearly moving total	Pair wise total	Four yearly moving averages
2015	1	5	6,8-	Ú	
2016	2	3		- ; ·	
	1		5+3+7+6=21		
2017	3_	7		21+20=41	$\frac{41}{8} = 5.13 \checkmark$
			21-5+4=20		
2018	4	6		20+25=45 v	$\frac{45}{8} = 5.63 \checkmark$
<i>§</i>		or of the	20-3+8=25		1 Prof.
2019	5	4		25+27=52 ✓	$\frac{52}{8} = 6.5 \checkmark$
	3	- P (C)	25-7+9=27	25 697	5
2020	6	8 3	J 3	27+31=58	$\frac{58}{8} = 7.25 \checkmark$
			27-6+10=31		
2021	7	9		31+35=66	$\frac{66}{8} = 8.25 \checkmark$
			31-4+8=35		6 1 5
2022	8	10	. See	35+36=71	$\frac{71}{8} = 8.88 \checkmark$
		desplay to	35-8+9=36		3 3
2023	9	8		1:62	0-1:88.03
2024	10	9			E L PR US